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Appendix A: Proof of Propositions 

Proof of Lemma 1 

We solve the two-stage profit maximization problem using backward induction. At the second stage, the 

client and the MSS provider will decide efforts simultaneously based on the first-order conditions (9) 

and (10). Note that these conditions only depend on the compensation rate 𝛽 but not the contract price 

𝑝 We denote 𝑞𝑘 = 𝑞𝑘
∗ (𝛽) and 𝑞𝑠 = 𝑞𝑠

∗(𝛽) as the joint solution of equations (9) and (10). Going back to 

the first stage, the MSS provider’s profit maximization problem could be written as 

 

max
𝑝,𝛽

𝑝 − ℬ(𝑎, 𝑞𝑘, 𝑞𝑠)𝛽𝑣 − 𝒞𝑠(𝑞𝑠) 

s. t. 𝑢1 ≥ 𝑈0
∗, 𝑞𝑘 = 𝑞𝑘

∗(𝛽), 𝑞𝑠 = 𝑞𝑠
∗(𝛽) 

(A1)  

The first set of constraints is to ensure the clients will receive at least the reservation utility, so that they 

are willing to outsource. We rewrite this constraint with a slack variable 𝑦 ≥ 0 to be 𝑢1 = 𝑈0
∗ + 𝑦, which 

could also be written as 𝑝 = [1 − ℬ(𝑎, 𝑞𝑘, 𝑞𝑠)(1 − 𝛽)]𝑣 − 𝒞𝑘(𝑞𝑘) − 𝑈0
∗ − 𝑦. By substituting the price 

with this constraint, the maximization problem could be rewritten as 

 

max
𝑦,𝛽

𝑤 − 𝑈0
∗ + 𝑦 

s. t. 𝑦 ≥ 0, , 𝑞𝑘 = 𝑞𝑘
∗ (𝛽), 𝑞𝑠 = 𝑞𝑠

∗(𝛽) 

(A2)  

Obviously, the profit is maximized with 𝑦 = 0, meaning the MSS provider extracts all surplus from the 

client. Hence, the objective of profit maximization is equivalent to welfare maximization, but rather than 

directly choosing the efforts, the MSS provider can only choose a compensation rate to influence the 

efforts. Note that this result holds even if we introduce interdependent risk into the model, and the 

proof is similar and omitted here. ∎ 
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Proof of Proposition 1 

We proof this proposition by contradiction. Suppose the first best welfare is achievable with a loss-

based liability contract, which means 𝑞𝑘
∗ = 𝑄𝑘

∗  and 𝑞𝑠
∗ = 𝑄𝑠

∗ for some constant 𝛽∗. If 𝑞𝑘
∗  is interior, it 

should satisfy the first-order condition of utility stated in (9), and  𝑄𝑘
∗  should satisfy the first-order 

condition of welfare with respect to the client’s effort stated in (2). Solving (2) and (9) together at 

𝑞𝑘
∗ = 𝑄𝑘

∗  gives  

 𝛽𝑣
𝜕ℬ

𝜕𝑞𝑘
|
𝑄𝑘

∗
= 0. (A3)  

Similarly, if 𝑞𝑠
∗ is interior, it should satisfy the first-order condition of profit stated in (10), and  𝑄𝑠

∗ should 

satisfy the first-order condition of welfare with respect to the MSSP’s effort stated in (3). Solving (3) and 

(10) together at 𝑞𝑠
∗ = 𝑄𝑠

∗ gives  

 (1 − 𝛽)𝑣
𝜕ℬ

𝜕𝑞𝑠
|

𝑄𝑠
∗

= 0. (A4)  

(A3) and (A4) is solvable only when 
𝜕ℬ

𝜕𝑞𝑘
|

𝑄𝑘
∗

= 0 or 
𝜕ℬ

𝜕𝑞𝑠
|

𝑄𝑠
∗

= 0. When 
𝜕ℬ

𝜕𝑞𝑘
|
𝑄𝑘

∗
= 0, for interior 𝑄𝑘

∗ , we have 

𝜕𝒞𝑘

𝜕𝑞𝑘
|

𝑄𝑘
∗

= 0 from equation (2), which violates the assumption of increasing cost, 𝜕𝒞𝑘/𝜕𝑞𝑘 > 0. Similarly, 

when 
𝜕ℬ

𝜕𝑞𝑠
|

𝑄𝑠
∗

= 0, for interior 𝑄𝑠
∗ , we have 

𝜕𝒞𝑘

𝜕𝑞𝑠
|

𝑄𝑠
∗

= 0 from equation (3), which also violates the 

assumption of increasing cost, 𝜕𝒞𝑠/𝜕𝑞𝑠 > 0. Therefore, the first best welfare is not achievable with a 

loss-based liability contract when first best efforts are interior, i.e. 𝑄𝑘
∗ > 0 and 𝑄𝑠

∗ > 0. ∎ 

 

Proof of Proposition 2 

From the main text, a variable liability contract with 𝛽 = ℬ(𝑎, 𝑄𝑘
∗ , 𝑄𝑠

∗)/ℬ(𝑎, 𝑞𝑘 , 𝑄𝑠
∗)  satisfies the 

sufficient conditions for inducing socially optimal effort stated in (11) and (12) at (𝑞𝑘, 𝑞𝑠) = (𝑄𝑘
∗ , 𝑄𝑠

∗). 
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Note that the second order condition for the client 𝜕2𝑢1/𝜕𝑞𝑘
2 = −𝑣𝜕2ℬ/𝜕𝑞𝑘

2 − 𝜕2𝒞𝑘/𝜕𝑞𝑘
2 < 0 and for 

the MSS provider 𝜕2𝜋/𝜕𝑞𝑠
2 = −𝛽𝑣𝜕2ℬ/𝜕𝑞𝑠

2 − 𝜕2𝒞𝑠/𝜕𝑞𝑠
2 < 0  are satisfied. From Lemma 1, it is 

straightforward to see that the MSS provider will adopt this welfare-maximizing contract to maximize its 

profit, meaning the first best social welfare will be achieved with this contract. ∎ 

 

Proof of Proposition 3 

From the main text, a threshold-based liability contract with 𝛽 = 𝟏𝑞𝑘≥𝑄𝑘
∗  only satisfies the MSS 

provider’s sufficient condition for inducing socially optimal effort stated in (12) at (𝑞𝑘, 𝑞𝑠) = (𝑄𝑘
∗ , 𝑄𝑠

∗). 

However, we shall see that the client will also choose 𝑞𝑘 = 𝑄𝑘
∗  in this situation. Suppose the client’s 

effort deviates from 𝑄𝑘
∗ , if 𝑞𝑘 < 𝑄𝑘

∗ , the MSSP will response with zero effort because the compensation 

rate becomes zero. If 𝑞𝑘 > 𝑄𝑘
∗ , since the expected loss from system breach is fully covered by the MSSP, 

the client’s utility 𝑢1 = 𝑣 − 𝒞𝑘(𝑞𝑘) − 𝑝 will only be lower. Therefore, the client’s effort will not deviate 

from 𝑄𝑘
∗ , and from Lemma 1, the MSS provider will use this welfare-maximizing contract to maximize its 

profit. Hence, a threshold-based liability contract with conditional compensation is socially optimal. ∎ 

 

Proof of Proposition 4 

As the proof for loss-based liability and threshold-based liability is similar to the baseline scenario, we 

focus our discussion on variable liability contract. For a variable liability contract with the form of 

optimal-to-actual breach ratio as compensation rate, i.e. 𝛽𝑗 = ℬ(𝑎, 𝑄𝑘𝑒
∗ , 𝑄𝑠𝑒

∗ )/ℬ(𝑎, 𝑞𝑘𝑗 , 𝑄𝑠𝑒
∗ ), the MSSP’s 

sufficient condition for inducing socially optimal effort stated in (31) is satisfied at (𝑞𝑘𝑗, 𝑞𝑠𝑗) =

(𝑄𝑘𝑒
∗ , 𝑄𝑠𝑒

∗ ). On the other hand, the client’s condition stated in (30) becomes 

 
𝛽𝑗ℒ𝑗

ℬ(𝑎, 𝑞𝑘𝑗, 𝑄𝑠𝑒
∗ )

𝜕ℬ(𝑎, 𝑞𝑘𝑗, 𝑄𝑠𝑒
∗ )

𝜕𝑞𝑘𝑗
= [𝛽𝑗 + 𝑒(𝑚 − 1)]

𝜕ℬ(𝑎, 𝑞𝑘𝑗, 𝑞𝑠𝑗)

𝜕𝑞𝑘𝑗
, (A5)  
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which can be simplified to ∑ ℬ(𝑎, 𝑞𝑘𝑖, 𝑞𝑠𝑖)𝑚
𝑖=1,𝑖≠𝑗 = (𝑚 − 1)ℬ(𝑎, 𝑄𝑘𝑒

∗ , 𝑄𝑠𝑒
∗ ) when (𝑞𝑘𝑗 , 𝑞𝑠𝑗) = (𝑄𝑘𝑒

∗ , 𝑄𝑠𝑒
∗ ). 

This means if the protection efforts on other clients’ systems are also socially optimal, the condition will 

be satisfied. However, the client may have incentive to over-protect the system if all other parties exert 

the socially optimal efforts. In particular, when 𝑞𝑘𝑖 = 𝑄𝑘𝑒
∗  ∀𝑖 ≠ 𝑗 and 𝑞𝑠𝑖 = 𝑄𝑠𝑒

∗  ∀𝑖, the second order 

derivative of the client’s utility with respect to 𝑞𝑘𝑗 is 

 
𝜕2𝑢1

𝜕𝑞𝑘𝑗
2 = −[1 + 𝑒(𝑚 − 1)𝛽𝑗

2]𝑣
𝜕2ℬ

𝜕𝑞𝑘𝑗
2 −

𝜕2𝒞𝑘

𝜕𝑞𝑘𝑗
2 +

𝑒(𝑚 − 1)𝛽𝑗
2𝑣

ℬ(𝑎, 𝑞𝑘𝑗, 𝑄𝑠𝑒
∗ )

[
𝜕ℬ

𝜕𝑞𝑘𝑗
]

2

, (A6)  

where 𝜕ℬ/𝜕𝑞𝑘𝑗 and  𝜕2ℬ/𝜕𝑞𝑘𝑗
2  are evaluated at 𝑞𝑠𝑗 = 𝑄𝑠𝑒

∗ . Note that the last term is positive, meaning 

that the function may change in concavity and the first-best effort could be a local maximum rather than 

a global one. In an extreme situation where ℬ(𝑎, 𝑞𝑘𝑗, 𝑄𝑠𝑒
∗ ) = 0 for some 𝑞𝑘𝑗 > 𝑄𝑘𝑒

∗ , the compensation 

will go to infinity and could be obtained from the loss due to the interdependent risk. Figure A1(a) 

shows an example of the client j’s utility curve with this issue from the serial configuration scenario, 

which could be solved by imposing a 100% limit liability, and the resulting utility curve is shown in Figure 

A1(b). Note that the local maximum issue may not exist for some parameter settings, for example in 

total effort security shown in Figure A1(c) and A1(d). 

 Hence, given 𝛽𝑗 = min{ℬ(𝑎, 𝑄𝑘𝑒
∗ , 𝑄𝑠𝑒

∗ )/ℬ(𝑎, 𝑞𝑘𝑗 , 𝑄𝑠𝑒
∗ ), 1}, the client will also exert 𝑞𝑘𝑗 = 𝑄𝑘𝑒

∗ , 

because the client’s utility will become 𝑢1 = 𝑣 − 𝒞𝑘(𝑞𝑘𝑗) − 𝑝𝑗  for 𝑞𝑘𝑗 ≥ 𝑄𝑘𝑒
∗ , which is decreasing in 𝑞𝑘𝑗 

and so the client will not over-protect. As a result, a variable liability contract with the compensation 

rate equal to the optimal-to-actual breach probability ratio capped at 100% is socially optimal. ∎ 

 Remarkably, the optimal variable liability function could also be directly obtained from solving 

the differential equations from conditions (30) and (31). The solution of (30) is 𝛽𝑗 = �̃�𝑗/ℒ𝑗 − 𝑒(𝑚 − 1), 

where �̃�𝑗 is a constant, and condition (31) implies 𝛽𝑗 = 1. These two conditions suggest the MSS 

provider should choose �̃�𝑗 that satisfies �̃�𝑗/ℒ𝑗 − 𝑒(𝑚 − 1) = 1, which is simply �̃�𝑗 = [1 + 𝑒(𝑚 − 1)]ℒ𝑗. 
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When every party exerts the first best effort, ℒ𝑗 = [1 + 𝑒(𝑚 − 1)]ℬ(𝑎, 𝑄𝑘𝑒
∗ , 𝑄𝑠𝑒

∗ ). Hence, the socially 

optimal variable liability function based on the solution of (30) and (31) is 

 𝛽𝑗 =
[1 + 𝑒(𝑚 − 1)]2ℬ(𝑎, 𝑄𝑘𝑒

∗ , 𝑄𝑠𝑒
∗ )

ℬ(𝑎, 𝑞𝑘𝑗, 𝑄𝑠𝑒
∗ ) + 𝑒(𝑚 − 1)ℬ(𝑎, 𝑄𝑘𝑒

∗ , 𝑄𝑠𝑒
∗ )

− 𝑒(𝑚 − 1). (A7)  

 

Figure A1: Utility from Optimal-to-actual Breach Variable Liability with Interdependent Risk 

Parameters: 𝑚 = 101, 𝑎 = 0.01, 𝑣 = 100, ℬ = 𝑎(1 − 𝑞𝑘𝑗)(1 − 𝑞𝑠𝑗), 𝒞𝑘 = 0.7𝑞𝑘𝑗
2 , 𝒞𝑠 = 0.6𝑞𝑠𝑗

2 , 𝑝𝑗 = 0. 

(a) Unlimited liability (serial configuration) (b) Limited liability (serial configuration) 

  

Parameters: 𝑚 = 101, 𝑎 = 0.01, 𝑣 = 100, ℬ = 𝑎(1 − 0.5𝑞𝑘𝑗 − 0.5𝑞𝑠𝑗), 𝒞𝑘 = 0.7𝑞𝑘𝑗
2 , 𝒞𝑠 = 0.6𝑞𝑠𝑗

2 , 𝑝𝑗 = 0. 

(c) Unlimited liability (total effort) (d) Limited liability (total effort) 
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Appendix B: Additional Notes on Limited Liability 

In loss-based liability, suppose 𝛽∗ is the optimal compensation rate without limited liability, the MSS 

provider will simply choose 𝛽 = min{𝛽∗, 𝛾} to maximize the welfare because of the quasi-concavity. The 

first-order conditions for the client and the MSS provider remain the same as in (9) and (10). Therefore, 

the liability upper bound introduces further distortion on loss-based liability only when 𝛾 < 𝛽∗, meaning 

the MSS provider can only choose the liability upper bound instead of the optimal rate as the actual 

compensation rate. 

 In variable liability, the compensation rate function could be written as 𝛽 = min{�̃�/

ℬ(𝑎, 𝑞𝑘 , 𝑆), 𝛾}, where �̃� and 𝑆 are constants decided by the MSSP. To encourage the client to exert 𝑄𝑘
𝑠𝑏, 

the compensation rate should reach the maximum, i.e. 𝛽 = 𝛾, when the effort is at the desirable level 

𝑄𝑘
𝑠𝑏. However, the client may have incentive to over-protect, which is similar to the case in threshold-

based liability, and the incentive compatibility constraint for regulating over-protection is the same as 

(38). Yet, unlike threshold-based liability, the client may also have incentive to under-protect because 

the MSS provider will still provide effort and compensation. The incentive compatibility constraint for 

regulating under-protection is 

 
𝜕𝑢1

𝜕𝑞𝑘
|
𝑞𝑘=𝑄𝑘

𝑠𝑏−
= (1 − 𝛾)

𝜕𝑞𝑠

𝜕𝑞𝑘

𝜕ℬ

𝜕𝑞𝑠
𝑣 + 𝛾

𝜕ℬ

𝜕𝑞𝑘
𝑣 + ℬ

𝜕𝛽

𝜕𝑞𝑘
𝑣 ≥ 0, (A8)  

which means further decrease effort from 𝑄𝑘
𝑠𝑏 will decrease the utility. This condition is similar to (38) 

except an additional term ℬ𝜕𝛽/𝜕𝑞𝑘 is included, and the condition requires to be positive instead of 

negative. This implies ℬ𝜕𝛽/𝜕𝑞𝑘 has to be sufficiently large to deter the client from under-protection. 

Remarkably, this condition in threshold-based liability is always positive because 𝜕𝛽/𝜕𝑞𝑘,𝑗 = +∞ at 

𝑞𝑘 = 𝑄𝑘
𝑠𝑏− due to the property of stepwise function. Therefore, the granularity of variable liability may 

hurt the welfare in limited liability as it potentially gives incentive for the client to underwork.  
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 Note that the explicit form of 𝜕𝑞𝑠/𝜕𝑞𝑘 could be obtained by applying implicit function theorem 

on the MSS provider’s best response constraint stated in (37): 

 
𝜕𝑞𝑠

𝜕𝑞𝑘
= −𝛾

𝜕2ℬ

𝜕𝑞𝑘𝑞𝑠
𝑣 (𝛾

𝜕2ℬ

𝜕𝑞𝑠
2 𝑣 +

𝜕2𝒞𝑠

𝜕𝑞𝑠
2 )⁄ , (A9)  

and the sign will be solely determined by the cross partial derivative of the breach function. 

 We now apply the three security scenarios into the limited liability model. For total effort 

security, condition (38) becomes −𝛾𝜆𝑘𝑎𝑣 ≤ 0, and (A8) is simply zero when 𝛽 = min{𝛾(1 − 𝜆𝑘𝑄𝑘
𝑠𝑏 −

𝜆𝑠𝑄𝑠
𝑠𝑏)/(1 − 𝜆𝑘𝑞𝑘 − 𝜆𝑠𝑄𝑠

𝑠𝑏), 𝛾}, meaning the MSS provider can use threshold-based and variable 

liability contracts to ensure second-best effort from the client. For illustration, we compare the 

contracts numerically, and the result is shown in Figure B1. The client’s effort is actually first best in 

threshold-based liability, variable liability and third-party contract even with limited liability, because 

the limited liability constraint only affects the MSS provider’s effort and it will not further affect the 

client’s effort as efforts are independent in total effort security. However, client will underwork with 

loss-based liability when the compensation rate is positive. On the other hand, the MSS provider will 

underwork for all contracts with limited liability, and this situation is most severe for loss-based liability 

whereas the effort is the same for the other three contracts. Interestingly, when the liability upper 

bound is lower than the optimal compensation rate in loss-based liability, the MSS provider will exert 

the same effort in all types of contract. The welfare of loss-based liability is always lower than that in the 

other three contracts, and become stable for 𝛾 ≥ 𝛽∗.  

Next, we apply the limited liability model into serial configuration. The incentive compatibility 

conditions are are all satisfied since (38) becomes −𝛾𝑎𝑣[1 − 𝑎𝑣(1 − 𝑄𝑘
𝑠𝑏)/𝑐𝑠] ≤ 0, and (A8) becomes 

𝛾(1 − 𝛾)(1 − 𝑄𝑠
𝑠𝑏)(𝑎𝑣)2/𝑐𝑠 ≥ 0  when 𝛽 = min{𝛾(1 − 𝑄𝑘

𝑠𝑏)/(1 − 𝑞𝑘), 𝛾} . The comparison for 

different contracts is shown in Figure B2. Client will overwork with limited liability in general, except in 

some cases in loss-based liability. The client’s effort is always higher in a third-party contract compared 
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with threshold-based or variable liability. Similarly, the MSS provider will underwork in most of the case, 

and its effort is always lower in a third-party contract compared with threshold-based or variable liability. 

In terms of welfare, threshold-based or variable liability is a slightly higher compared with a third-party 

contract, and again loss-based liability is the worst. 

For parallel configuration, condition (38) becomes −(1 + 𝛾)𝑄𝑠
𝑠𝑏𝑎𝑣/2 ≤ 0, and (A8) could be 

satisfied with �̃� = 𝛾ℬ(𝑎, 𝑄𝑘
𝑠𝑏 , 𝑆) and a sufficiently large 𝑆. The contract comparison result is shown in 

Figure B3. Client will underwork with limited liability, and the distortion is least severe in threshold-

based or variable liability. The effort in loss-based liability has an interesting pattern: half of the first best 

effort for 𝛾 ≥ 0.5, and an inverted u-shape curve, which could be more than 𝑄𝑘
∗/2, for 𝛾 < 0.5. The MSS 

provider will also underwork with limited liability, and similarly the effort in threshold-based or variable 

liability is the closest to the first best effort. With limited liability, threshold-based or variable liability 

has the highest welfare, followed by third-party contract, and finally loss-based liability.  
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Figure B1: Liability Upper Bound (Total Effort) 

𝑐𝑘 = 1.5 𝑐𝑘 = 4 

(i) Client’s effort 

  

(ii) MSS provider’s effort 

  

(iii) Welfare 

  

*FB = First best, LB = Loss-based liability, TV = Threshold-based or variable liability, TP = Third party 
contract. 

Parameters: 𝑚 = 2, 𝑎 = 0.005, 𝑣 = 100, 𝑐𝑠 = 1, ℬ = 𝑎(1 − 𝜆𝑘𝑞𝑘𝑗 − 𝜆𝑠𝑞𝑠𝑗), 𝜆𝑘 = 𝜆𝑠 = 0.5 

Clients are assumed to be subsidized by 𝛽𝑗
∗(1 − 𝜆𝑘𝑞𝑘𝑗

∗ − 𝜆𝑠𝑞𝑠𝑗
∗ )𝑎𝑣 in third-party contracts. 
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Figure B2: Liability Upper Bound (Serial Configuration) 

𝑐𝑘 = 1.5 𝑐𝑘 = 4 

(i) Client’s effort 

  

(ii) MSS provider’s effort 

  

(iii) Welfare 

  

*FB = First best, LB = Loss-based liability, TV = Threshold-based or variable liability, TP = Third party 
contract. 

Parameters: 𝑚 = 2, 𝑎 = 0.005, 𝑣 = 100, 𝑐𝑠 = 1, ℬ = 𝑎(1 − 𝑞𝑘𝑗)(1 − 𝑞𝑠𝑗) 

Clients are assumed to be subsidized by 𝛽𝑗
∗(1 − 𝑞𝑘𝑗

∗ )(1 − 𝑞𝑠𝑗
∗ )𝑎𝑣 in third-party contracts. 
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Figure B3: Liability Upper Bound (Parallel Configuration) 

𝑐𝑘 = 1.5 𝑐𝑘 = 4 

(i) Client’s effort 

  

(ii) MSS provider’s effort 

  

(iii) Welfare 

  

*FB = First best, LB = Loss-based liability, TV = Threshold-based or variable liability, TP = Third party 
contract. 

Parameters: 𝑚 = 2, 𝑎 = 0.005, 𝑣 = 100, 𝑐𝑠 = 1, ℬ = 𝑎(1 − 𝑞𝑘𝑗𝑞𝑠𝑗) 

Clients are assumed to be subsidized by 𝛽𝑗
∗(1 − 𝑞𝑘𝑗

∗ 𝑞𝑠𝑗
∗ )𝑎𝑣 in third-party contracts. 


