
SOFTWARE FUNCTIONALITY: A GAME THEORETIC ANALYSIS     151

Journal of Management Information Systems / Summer 2002, Vol. 19, No. 1, pp. 151–184.

© 2002 M.E. Sharpe, Inc.

0742–1222 / 2002 $9.50 + 0.00.

Software Functionality:
A Game Theoretic Analysis

KAI LUNG HUI AND KAR YAN TAM

KAI LUNG HUI is assistant professor in the School of Computing at the National
University of Singapore. He received his Ph.D. in Information Systems from the
Hong Kong University of Science and Technology. His research interests include
consumer choice of IT products, digital product characteristics and competitions, and
adoption of information technology. He has papers published or forthcoming in Com-
munications of the ACM, IEEE Transactions on Engineering Management, Informa-
tion and Management, Journal of Management Information Systems, and Journal of
Organizational Computing and Electronic Commerce.

KAR YAN TAM is currently Professor of Information & Systems Management and
Director of the Center for Electronic Commerce at the Hong Kong University of
Science & Technology. His research interests include adoption of information tech-
nology, electronic commerce, and information technology applications. He has pub-
lished extensively on these topics in major management science and information
systems journals. He serves on the editorial board of a number of information sys-
tems journals and has extensive consulting experience with major local and overseas
companies including HSBC, IBM Hong Kong, Sun Microsystems, and HK Telecom.

ABSTRACT: Digital products are now widely traded over the Internet. Many research-
ers have started to investigate the optimal competitive strategies and market environ-
ments for such products. This paper studies the competitive decisions made about
software, a major class of digital products that can be easily sold through computer
networks. Instead of focusing on traditional competitive dimensions, such as price or
quantity, we study the number of functions that should be incorporated into the soft-
ware. Using game theoretic analysis, we show that there is no fixed strategy that is
optimal for software developers in a duopoly market with one-stage simultaneous
moves. This happens because, given one developer’s decision, there is always an
incentive for the other developer to deviate and achieve higher payoffs. Nevertheless,
a unique reactive equilibrium does emerge if we consider the two-stage variation of
the model, where the two developers both enjoy substantial profits by serving differ-
ent segments of the market. Essentially, the first mover commits himself to a certain
functionality level that induces a rational follower to target his software to the (previ-
ously) unattended segment. We discuss our results in light of scale economies in the
software development process and market segmentation.

KEY WORDS AND PHRASES: development cost, digital products, functionality, game
theory, software.



152     HUI AND TAM

THE INCREASING POPULARITY OF THE INTERNET has brought about in time develop-
ments in electronic business. Although the Internet cannot actually carry physical
products, it does transmit electronic bits, which is the single and most important con-
stituent of digital goods. Owing to its fast transmission speed and extensive connectiv-
ity, the Internet is capable of delivering electronic information to massive populations in
minutes, or even seconds. Such an efficient delivery scheme is almost impossible with
traditional channels, such as manual deliveries or postage. This partly explains why
more and more digital products are being sold over the “information superhighway.”

Among different types of digital products, software is probably one of the most
widely traded products over the Internet. According to Gurbaxani and Mendelson [23],
corporate software expenditures grow almost at the same rate as hardware products
(around 8 percent per year) and this growth follows an exponential pattern. This trend
will likely escalate given the growing popularity of the Internet. Small to medium-
sized software vendors can now easily set up Web presences and sell their products
online. Today it is very common to find linkages to over thousands of software ven-
dors on popular shareware sites like TUCOWS (www.tucows.com) or CNET
Download.com (download.cnet.com). Given this staggering growth and the appearance
of new marketing concepts like limited period free evaluations or limited functionality
evaluation copies, the competitive conditions of software products deserve higher at-
tention from information systems (IS)/information technology (IT) researchers.

The present study develops a game theoretic model that looks at the functionality
decisions of software vendors. It is well recognized that the functionality of a software
product plays a decisive role in its reception by customers. On many occasions, cus-
tomers are often advised to compile a list of functional specifications and to check
them against the market offerings before they select the appropriate software pack-
ages or systems [6, 20, 29, 45]. Since software is indeed sets of instructions that per-
form specific tasks, different combinations of such instructions may appeal to different
customer segments. A movie creator may need powerful 3-D modeling software that
can handle millions of polygons to generate dazzling animation, whereas an indi-
vidual designer may only require modeling software that can create simple scenes and
graphics. Therefore, different customers may have different functional needs, and it is
vital for software vendors to position their software products appropriately.

Using a parsimonious competitive model, we seek to address the following re-
search questions in this study:

What are the optimal functional levels that software developers should set for
their software programs? Are they consistent across different market structures?

Obviously, more powerful software implies higher development costs from the soft-
ware developers, which may directly translate into higher product prices. At the same
time, more powerful programs may appeal to wider customer groups, since they can
fulfill the task requirements of more demanding users. This may eventually lead to
substantial increments in product sales. How the cost and sales factors affect the final
functionality settings is a major issue that we shall explore in this paper.

http://www.tucows.com


SOFTWARE FUNCTIONALITY: A GAME THEORETIC ANALYSIS     153

Literature Review

Research on Digital Goods and Software Products

IT IS WIDELY AGREED BY MANY RESEARCHERS that the onetime development cost of
digital product dominates its marginal cost. The reason is fairly simple. It takes liter-
ally no effort to reproduce a digitized product. Almost all expenses associated with
making a digitized good are incurred during the development stages, and they are
paid only once. As soon as the final product is ready, it is nearly costless to produce
additional copies.

This diminishing marginal production cost, coupled with the low distribution cost
brought about by the ubiquity of the Internet, necessitates new competitive models to
characterize the market behaviors of digital products. In particular, traditional cost-
based pricing (like Bertrand price competition) may not be readily applicable since
the marginal cost of digital goods is close to zero. To charge based on marginal cost
would imply almost free products, which is not what we typically observe in today’s
digital product markets.

This low marginal cost property has brought about radically new implications and
practices for the software industry. Because of the negligible replication cost, it is
now very common for software vendors to promote free tryout, which is a very effec-
tive mechanism in signaling software quality. As first demonstrated by Ackerlof [1],
quality uncertainty and asymmetric information between sellers and buyers can lead
to severe adverse selection problems. This could sometimes lead to a complete mar-
ket breakdown, which occurs when good products are completely forced out of the
market. Free product tryout, on the other hand, allows consumers to gain hands-on
experience with the actual software. Consumers who can easily download the evalu-
ation copies from the Internet can then thoroughly test the various facets (like func-
tionality, quality, or interface) of the software.

Other than cost considerations, past research on digital products and software deci-
sion-making has primarily aimed at identifying optimal marketing conditions or strat-
egies. For instance, in view of the inappropriateness of cost-based pricing, many
researchers suggest that product differentiation, price discrimination, and quality dis-
crimination were possible means to achieve higher returns for digital product sellers
[14, 40, 42]. By examining parsimonious economic models, they show that these
strategies can effectively serve more customers and bring in additional benefits to
both sellers and buyers.

Setting aside pricing issues, Bakos and Brynjolfsson [3] consider the interesting
phenomenon of bundling. They show that bundling a large number of digital prod-
ucts, even if some of them are totally irrelevant to particular customers, can some-
times be profitable to sellers. This is an intriguing and yet surprising result since it is
commonly held that the Internet will facilitate micropayments, which will probably
lead to “smaller” and more customized products (for example [12, 37]). Along a
similar vein, Bakos et al. [4] present another interesting result when they show that
product sharing among customers can indeed be beneficial to sellers. This is again



154     HUI AND TAM

counter-intuitive since, in general, sharing implies lower sales volume and hence
lower revenue.

Another stream of research focuses specifically on computer software. Choudhary
et al. [15] set up an economic model to study the feasibility of renting software. Since
renting encompasses different revenue schemes and legal considerations compared
to traditional selling or licensing approaches, it opens up new opportunities for soft-
ware vendors to capture higher market shares and profits. Padmanabhan et al. [36]
study new software development and upgrade decisions when demand externality
information is asymmetric. Their results show that, when consumers have limited
information on the true externality, an initial less-than-full quality product can serve
as a credible signal of a high network externality. Ellison and Fudenberg [18] show
that, even with positive network externalities, monopoly software vendors might still
want to introduce upgrades that are backward- but not forward-compatible. Finally,
from the point of view of a monopoly vendor, Raghunathan [38] shows that under
high cannibalization, introducing multiple editions of the same software simultaneously
is optimal in many general conditions, whereas a single edition with full features is
preferable when cannibalization is low.

All these studies significantly contribute to understanding the competitive deci-
sions on digital products, and they provide valuable guidance toward the marketing
and pricing of computer software. However, on the consumer side, the adoption of
computer software often involves complicated review procedures and selection crite-
ria, which may largely determine the final choice outcomes. Therefore, when study-
ing software development decisions, it is useful to consider the evaluation criteria of
consumers. We next provide a brief overview of the software selection literature.

Software Selection and Evaluation

In the past, many studies have suggested different frameworks, strategies, and pro-
cesses in selecting various types of software technologies or products. Broadly de-
fined, software evaluation exercises can be classified into two groups: product-oriented
and process-oriented [9]. Product-oriented evaluations focus on choosing software
products that can fulfill the functional requirements of the users, whereas process-
oriented evaluations aim at finding software that can improve existing organization
processes and practices.

The process approach, in general, tends to be more extensive and situation-spe-
cific, and its outcome depends largely on existing organization customs and prac-
tices. For individual users or small businesses, software choices are based more on
descriptive variables, such as those related to the software, vendors, or peer opinions
[13]. Therefore, product-oriented evaluation methodologies might be more readily
applied for software decisions faced by individual or small business users, who could
only devote limited resources toward evaluating the alternatives. Besides, for more
generic tasks such as word processing or e-mail management, the application pro-
cesses are normally well defined and the selection among alternative software offer-
ings often boil down to evaluating product (or vendor) related attributes.



SOFTWARE FUNCTIONALITY: A GAME THEORETIC ANALYSIS     155

Many software evaluation frameworks that place heavy emphasis on product fea-
tures have been developed for various application domains. For instance, the technol-
ogy delta framework, proposed by Brown and Wallnau [9], focuses on understanding
the differences in features between competitive software technologies. Collier et al.
[16] suggest an evaluation framework that focuses on performance, functionality,
usability, and ancillary task support as four major categories of criteria that dictate the
selection of data mining software. With a particular focus on commercial-off-the-
shelf (COTS) software packages, several studies identify, among many others, func-
tionality, quality, and interoperability as important selection attributes [28, 35, 43].
Finally, to illustrate the IusWare software selection methodology, Morisio and Tsoukias
[33] apply functionality, usability, portability, and maturity in their case study as the
quality attributes in evaluating competitive CASE products.

A common thread in these evaluation frameworks is that functionality was almost
unanimously identified as an important attribute toward the final selections of soft-
ware. As indicated by Goodwin [22, p. 231], “in a sense, functionality itself can deter-
mine usability; if the functions provided do not match task requirements, a system will
not be usable.” Hence, functionality is of paramount importance in software choices,
and possessing suitable levels of functionality represents a necessary condition for the
success of software packages.1 Empirically, by studying the impact of software
preannouncements, Hoxmeier [25] also shows that fulfilling commitments to soft-
ware functionality is the most important element that affects vendor reputations.

Because of the dominant role of functionality in software choice decisions, we
consider functionality as a key attribute that determines software sales. This is a more
delicate approach compared to past studies that lumped all relevant attributes of soft-
ware into overall measures like “quality” or “value” (for example [18, 36]). Although
these measures are theoretically sound and can substantially aid in deriving tractable
solutions, they do not readily lend themselves to providing answers to practical, de-
velopment-related questions such as how many functions should software vendors
build into their products, or what should be the final complexity of the software. By
explicitly focusing on functionality, we could derive useful implications and strate-
gies that could be more directly applied by practitioners in the software industry.2 In
his study of software editions and upgrades, Raghunathan [38] also considers num-
ber of features as the key characteristic that differentiates the high- and low-end edi-
tions of the software, and he uses it as the primary variable that shapes the value
(consumer utility) of the software.3

Note that the aforementioned studies almost exclusively focus on the post-develop-
ment stages of the software. They assume the software was already in place, and do
not consider the phases prior to design and programming. Since computer software is
largely made up by functional routines, it is a major decision of software developers to
determine the number of routines to be programmed and incorporated into the final
commercial product. This is an important step that precedes any marketing or pricing
decisions. Overly complex software that includes too many advanced functions may
appeal to professional users, but general consumers who demand simple software may
opt for a low-value version that costs them less money. Therefore, the functionality of



156     HUI AND TAM

the software may determine, to a large extent, which consumer segment it is going to
serve and the final market size and performance of its vendor.

At first glance, our reliance on functionality to characterize computer software may
appear to closely correspond to the function point (FP) method of software size mea-
surement. However, recent research has shown that, provided the features of the soft-
ware are well isolated, the FP method can also be extended to new software engineering
approaches like the objected-oriented or component-based frameworks. A good ex-
ample is the object-oriented function point system, which maps logical files in tradi-
tional FP frameworks to object classes and transactions to object methods [10, 34].
Hence, our research model on functionality is general and its application to modern
software development practices is straightforward.

We apply game theory to examine the noncooperative outcomes of software ven-
dors who are selling the same category of computer software, with functionality and
price as key decision variables. Game theory has been widely applied to study multi-
agent decision problems in many different contexts (see, for example [21]). It is an
important tool for studying strategies involving multiple players, each attempting to
maximize their own payoff. The technique is appropriate in the present context be-
cause computer software vendors often need to compete against each other to achieve
higher market shares and customer bases (such as, Microsoft has been competing
against Lotus in the microcomputer spreadsheet market; against Netscape in the Internet
browser market; and against Oracle in the database market). Sarvary and Parker [39]
also apply game theory to study equilibrium conditions of information products, al-
though in their study only pure informational goods like reports or articles are con-
sidered. Since computer software differs substantially from pure informational goods,4

we propose a new competitive model that centers on the functionality of the software.
The detailed specification of the model is outlined in the next section.

Model Specifications

WE CONSIDER A COMPETITIVE MODEL where the functionality of each software ranges
from QL to QH. QL denotes the minimum functionality that consumers demand if they
are to consider buying the software. For example, in the case of word processors, the
minimum set of functions that consumers demand may include the ability to insert
and delete text, save and retrieve files, and print typed documents. If the software
lacks any one of these functions, it may not be attractive to anyone. QH, on the other
hand, denotes the upper bound on functionality. A developer simply cannot design
and incorporate an unlimited number of functions into a single software product. Hence,
we use QH to represent the highest possible number of functions that can appear in a
software package. Without loss of generality, we further set QL = 0 and QH = 1.

Consumer Preference

Different consumers have different tastes or preferences toward the functionality of
the software. We use a parameter q to represent the type of the consumer, where type



SOFTWARE FUNCTIONALITY: A GAME THEORETIC ANALYSIS     157

here denotes the minimum set of functions required by the particular consumer. If the
functionality of the software is higher than qi, then consumer i is a potential customer
of the software and vice versa. For simplicity and expositional purpose, we further
assume q is drawn from a uniform distribution between QL and QH (that is, 0 and 1).
That is,

f F1 and ,

where f denotes the probability density function and F denotes the cumulative density
function up to q. Later in this paper we shall modify this distribution assumption and
examine the changes on some of the model results and implications.

If the software vendor charges p for its software (with functionality Q), then the net
surplus of a particular consumer is

p Q
U

Q

,

0, .

We assume that consumers are “perfectly” price sensitive. That is, if there is more
than one choice of software, consumers will always opt for the alternative that charges
the lower price, provided its functionality is higher than q (that is, provided it can
match the task requirements of consumers).

Note that even though we focus exclusively on functionality, this setup of con-
sumer preference is sufficiently general, which can allow for the inclusion of other
software selection variables. For instance, if we need to consider fixed, vendor-spe-
cific factors such as reputation or complementary product lines, we may impose an
additive component d to the overall functionality that shifts the attractiveness of the
software. For function-related concerns such as the programming skill or quality of
the vendor, or market specific factors such as the weights placed by consumers on
each software function, we may utilize a multiplicative discount factor l that scales
the corresponding functionality. In other words, by choosing suitable scale and dis-
count parameters l and d, the expression g(Q) = lQ + d can be used in place of Q (as
in the above surplus function) to address additional software evaluation criteria.5 Nev-
ertheless, despite this extended generality, since the objective of this study is to ana-
lyze optimal functionality choices, we shall continue to assume l = 1 and d = 0 in the
remaining parts of the paper. That is, none of the vendors is enjoying ex ante advan-
tage (or suffering from disadvantage) compared to others.6

Demand

The demand for the software (with functionality level Q) consists of those consumers
whose net surplus is higher than zero. That is,

d Q p U   Q F Q F p Q p, Pr 0 and .



158     HUI AND TAM

To examine the relationship between overall market sizes and the vendors’ strategic
considerations, we denote M to be the total market potential served by the software,
which is a domain-specific parameter. That is, there are possibly different Ms for
different categories of software. For instance, it is likely that the number of potential
users for word processing software is larger than the one for database software. In
that case, M for the former category is substantially larger (in terms of magnitude)
than the latter one. Also note that M merely states the maximum. The actual number
of consumers who are willing to purchase a firm’s software depends on its function-
ality, price, and also the functionality of competitive software packages that exist in
the same market.

The overall demand across the entire market with size M is therefore

D Q p M Q p, .

With more than one choice in the same software market, we need to separately
examine different segments within the Q-space. Consider the case of two software
products with functionality Q1 and Q2. Without loss of generality, assume Q1 < Q2. We
need to consider three separate regions as shown in Figure 1.

Region 1: 0 to Q1

Since Q1 < Q2, p1 must be lower than p2 or otherwise all consumers will switch to
software 2 (since software 2 is superior in terms of functionality). Therefore, the con-
straint p1 < p2 must always be followed for software 1 to survive in the market. Since
consumers are price sensitive and p1 is lower, all consumers with q lying in this region
are potential customers of firm 1. Therefore, the resulting demand for software 1 is

D M Q p1 1 1 .

Region 2: Q1 to Q2

In this region, Q1 cannot satisfy the task requirements of consumers. All consumers
within this segment are therefore potential customers of firm 2. The net surplus of
consumers lying within this region is

U p2 ,

where

Q Q1 2 .

Since all consumers with type q less than Q1 prefer software 1, the corresponding
market demand for software 2 is

D M U   Q Q M Q Q p2 1 2 2 1 2Pr 0 and max , .



SOFTWARE FUNCTIONALITY: A GAME THEORETIC ANALYSIS     159

Region 3: Q2 to 1

Here consumer requirements on functionality are far too high, and both software 1
and 2 do not possess enough functionality to appeal to these consumers. Therefore,
all consumers with type q Î (Q2,1] will prefer to stay out of the market.

If Q1 = Q2, p1 must be equal to p2 (otherwise they are perfect substitutes with un-
equal prices, and obviously the lower priced software will capture all the demand,
which brings us back to the monopoly situation). In this case, the two vendors share
the demand, which is

D D M Q p1 2 / 2,

where

Q Q Q p p p1 2 1 2and .

Development Cost

We assume a direct relationship between the development cost and functionality level
of the software, and the development cost takes the form VQa.7 V is a positive con-
stant that denotes the onetime, per-function development cost that software vendors
must pay. The exponent a is a parameter that models the scale economies of the
software development process. An a less (bigger) than one indicates diseconomies
(economies) of scale, whereas an a equal to one represents constant returns to scale.8

It is straightforward to assume that computer software with more functions requires
higher development costs, since more designing, programming, and testing efforts
are needed to bring in the extra functions. This notion of incremental cost based on
functionality is well demonstrated in past theoretical and empirical software cost es-
timation studies (for example [7, 8, 19, 26, 30]).9

On the other hand, research has shown mixed evidence toward the scale economies
of the software development process. Early software cost studies applied linear re-
gressions to estimate the growth of cost (for example [2, 27]), which assumes con-
stant returns to scale irrespective of the size or functionality of the software. Latter
research, however, has suggested that the log-linear model (which corresponds to our
cost formulation) is often more appropriate and it permits direct assessment of the
scale economies parameter [5, 30]. Depending on the data sets used for estimation,
empirical results on scale economies tend to be inconclusive, where both increasing
and decreasing returns to scale were shown to exist for different sets of software

0 Q1 Q2 1  

Region 1 Region 2 Region 3 

Figure 1. Three Separate Regions in the Q-Space



160     HUI AND TAM

projects.10 Banker and Kemerer [5] suggest that software size may moderate scale
economies. Small software projects tend to show increasing returns to scale, whereas
larger projects are likely to exhibit the opposite trend. Finally, by analyzing the mini-
mum software cost model, Hu et al. [26] find that the effect of size on cost diminishes
as the size of the software grows (that is, economies of scale).

Our cost formulation can be adapted to model different scale economies by manipu-
lating the constant a. Given that previous research suggests scale economies param-
eters to be narrowly ranged around one, we begin our analysis by setting a = 1 (that is,
the development process exhibits constant returns to scale). We shall relax this restric-
tion and examine the model results in light of scale economies in a subsequent section.

Once the software is ready, we consider a scenario where consumers can observe
the functionality of the software. This is possibly achieved by detailed product de-
scriptions, performance statistics and comparisons, or product tryouts. Furthermore,
we assume software developers are risk neutral, and they know their own (as well as
their competitor’s) development costs. That is, V and a are common knowledge among
software developers.11

Having set up the basic model features, we can start to analyze the competitive
decisions of software developers. We begin with a monopoly software market in the
next section.

Optimal Decisions in a Monopoly Market

IN A MONOPOLY MARKET, there is only one software package available, and consum-
ers can only choose to either buy or not to buy the product. Software developers need
to make two decisions: the functionality level Q of the software and its price P. The
demand is now D = M(Q – P). And the profit is

  M Q P P VQprofit demand price development cos t .

The first-order conditions (FOCs) over Q and P yield

MP V MQ MP
Q P

V Q*
Q* P*

M

, 2 ,

2
, .

2

A closer inspection on the FOCs reveals that Q* is a local minimum. For the profit
function to be nonnegative, Q must satisfy the following relationships:

V
Q Q L

M

4
0 or ,

and p is an increasing function in Q after L. Hence, if Q is too low, the demand is too
small to compensate the onetime development cost of the software. This result is



SOFTWARE FUNCTIONALITY: A GAME THEORETIC ANALYSIS     161

intuitive and its implication is straightforward. Occasionally, some consumers may
prefer software with very limited functions, but producing specific software for those
consumers is not justifiable from the demand and profit point of view.

As long as Q is higher than L, p is always positive and increasing. Since QH is the
upper bound on Q, optimality requires Q* = QH = 1. Hence, a monopoly software
developer will choose Q* = 1 and P* = 0.5, which give the resulting profit

M
Vmonopoly .

4

To conclude, a monopoly software developer will choose to implement every pos-
sible function into its software package. This result is interesting and it partly ex-
plains why, empirically, some consumers indicated that they do not use a majority
number of functions in certain software packages [11, 31]. Since the optimal price P*
is set according to functional level (which is chosen to be the highest possible value),
some consumers (those who demand low functionality software) are unfortunately
priced out of the market. The final market demand is D = M/2, which means that only
one-half of the market is served by the software.

Note that for the monopoly developer to make a positive profit, p(monopoly) must be
nonnegative, which translates into V £ M/4. That is, either V (the per-function, one-
time development cost) must not be too high or M (the market potential) must not be
too small. If the market lacks any one of these, it is not profitable for any software
developer.

Optimal Decisions in a Duopoly Market

IN THIS SECTION, WE CONSIDER the situation when two firms are developing and
selling the same category of computer software. For instance, Microsoft and Lotus
are the two dominant players in the spreadsheet market, whereas Microsoft and
Netscape have almost taken up the whole Internet browser market.

Following the demand schedules in the “Demand” subsection, the demand and the
corresponding profit functions for the firms are:

M Q P M Q P P VQ  Q Q

D M Q P M Q P P VQ  Q Q

 Q QM Q P Q M Q P Q P VQ

1 1 1 1 1 1 1 2

1 1 1 1 1 1 1 1 1 2

1 21 1 2 1 1 2 1 1

if

1 2 1 2 if .

ifmax , max ,

Equilibrium Considerations

We first consider a simplified version of this game, where we restrict the strategy set
of each developer to be Si = {C, D}, i = 1 or 2, and 0 < C < D £ 1. Also, assume C and



162     HUI AND TAM

D are both on the high end of the Q-space, and the gap between them is very small.
Since Pi = Qi/2 is the optimal monopoly pricing strategy (and indeed also when Qi is
lower than Qj, i ¹ j), we tentatively assume the two developers price their software
according to this expression. The payoff matrix of this restricted setting is shown in
Figure 2.

Provided V is not close to M/8 (which is a necessary condition for any positive profit
in the duopoly market), it is easy to verify that if Q1 ¹ Q2, the “low Q” firm (strategy C)
would enjoy a higher profit than the “high Q” firm (strategy D). Even if the “high Q”
player anticipates this outcome and sets a higher price in an attempt to capture the
remaining surplus (the payoffs shown in parentheses in Figure 2),12 both players still
have incentives to select Q = C. Therefore, no matter what the opponent chooses, both
players would always prefer C instead of D. In other words, the unique Nash equilib-
rium (NE) of the game is Q1 = Q2 = C, with payoffs MC2/8 – VC to both players.

Nevertheless, the two players can do better than this NE. It can be shown that the
payoffs follow the relationship MC2/8 – VC < MD2/8 – VD. That is, both firms can do
better by simultaneously choosing Q = D (building higher functionality software).
This resembles the well-known prisoners’ dilemma, where both players have incen-
tives to deviate from cooperative moves, which, however, lead to suboptimal pay-
offs. From the consumers’ point of view, this outcome is also undesirable since some
consumers (those demanding software with Q between C and D) are not served by
the market.

Indeed, if we extend the strategy space and allow any Q Î [0, 1], provided the
opponent is developing software with sufficiently high Q, there is always an incen-
tive for one firm to construct software with fewer functions and capture substantial
demand (and hence profit). This is similar to a Bertrand competition, where players
have an incentive to bid down the final price. However, there is one subtle difference
here: the two firms would not bid Q all the way down to zero. If one firm is building
software with very few functions, the other firm may decide to switch and develop
the most powerful software (Q = 1). This is because, in this situation, the “gap” in
market demand is big enough so that the firm producing the high functionality soft-
ware could still attract enough consumers to generate a positive profit. The indiffer-
ence point between undercutting Q and going for Q = 1 is given by13

MQ
VQ M Q V

M M M
Q V V V

M

2 1
1

4 2

2 3
,

2 2 2

and the payoff corresponding to Q¢ is

M M M
V V V

3
2 .

2 2 2



SOFTWARE FUNCTIONALITY: A GAME THEORETIC ANALYSIS     163

Denote p(equal) as the maximum payoff to both firms when they develop equal software.
Appendix A shows that p¢ > p(equal). Therefore, the two developers could benefit each
other if one of them builds software at Q¢ and the other builds it at one. This is equivalent
to dividing up the market with each of them serving a different consumer segment.

Note that

V M
Q

/ 0
lim 3 1 0.732.

That is, as V ® 0 or M ® ¥,14 Q¢ can readily be calculated, which is well above 0.5
but lower than 1. In fact, Q¢ is always larger than 0.5. In a duopoly market, the firm
building the mediocre software always appeals to a larger consumer group than the
one that builds the most powerful software.

So far, we have been assuming the developers follow the monopoly pricing strat-
egy. Such a strategy is optimal when they select the same functional level. In cases
when the developers choose different Qs, the strategy remains the best for the “low
Q” player. But for the “high Q” player, provided his opponent’s Q is not too low, he
could actually do better by raising his price. If the optimal P2 is lower than Q1, player
2 (the “high Q” player) could gain extra profits by raising his price to Q1. Therefore,
if the restriction on pricing behavior is relaxed, the new indifference point between
producing the highest functionality software (and raising the price according to the
opponent’s Q) and undercutting Q is given by15

MQ
VQ M Q Q V

Q V M V M VM
M

2

2

1
4
2

5 ,
5

Figure 2. Payoff Matrix When Players Can Choose Either C or D, with C < D. Upper entries
refer to 1’s payoff, whereas lower entries refer to 2’s. ** Payoff when the “high Q” firm
raises its price to C.



164     HUI AND TAM

and the payoff corresponding to Q² is:

M V V
V M V M VM

M

22 8
5 .

25 5

Although the result is intuitive, in Appendix B we formally show that both Q² > Q¢
and p² > p¢. If the developer who builds the most powerful software can manipulate and
raise his price, both players can adjust their strategies and achieve a better outcome.

It is easy to verify that

V M
Q

/ 0
lim 0.8.

When V ® 0 or M ® ¥, the indifference point lies around 0.8, and the segment size
served by the lower functionality software is approximately four times the size served
by the full functionality alternative. In any case, as Q² > Q¢, Q² also lies above 0.5.
That is, the mediocre software has a larger segment of potential consumers. This
appears to be congruent to empirical observations. For smaller scale, COTS software
markets, the majority of customers of high-power software come from business sec-
tors, whereas, in most cases, individual consumers prefer cheaper software with ad-
equate functionality for home or leisure usage.

The profit p² enjoyed by both developers is better than either p¢ or p(equal), but it is
still considerably less than the monopoly payoff. For consumers, those who lie within
(Q², 1] are served by the most powerful software, whereas only one-half of the con-
sumers in [0, Q²] are served by the mediocre software (the one with Q = Q²).

p² is by far the best payoff for the developers in the duopoly market, which could
be achieved when one of them chooses Q = Q² and P = Q²/2 and the other chooses
Q = 1 and P = Q². However, this outcome is not sustainable, since the developer who
chooses Q² has an incentive to deviate from this strategy and switch to Q = 1 – e (e
being a small number). The best reactions of the two players are:

If Q2 > Q², player 1 should choose Q1 = Q2 – e and P1 = Q1/2.
If 0.5 < Q2 £ Q², player 1 should respond with Q1 = 1 and P1 = Q2.
If Q2 £ 0.5, player 1 should set Q1 = 1 and P1 = 0.5.

As a simple example, suppose one developer holds an a priori belief that the other
software is going to be very powerful. In order to avoid serving only consumers in the
very high end of the market and selling only a few copies of his software, he might
decide to produce a slightly less powerful alternative and charge a lower price in
order to sell to the lower-end consumers. This could possibly result in much higher
sales and hence a better profit. On the other hand, if the developer anticipates his
opponent will sell low functionality software, he might want to push himself to the
limit and build every possible function into his software. This is because now there
are enough high-end consumers available to justify the need of a highly capable soft-
ware package. Finally, if the developer expects the other software to possess very few
functions, he would follow the monopoly strategy stated in the previous section. That



SOFTWARE FUNCTIONALITY: A GAME THEORETIC ANALYSIS     165

is, he would completely ignore his competitor’s software (and its consumers, who are
not willing to pay for his product anyway) and focus his attention on the “upper half”
of the market.

Irrespective of the final choice made by the two developers, there is always an
incentive for one of the players to deviate, and no strategic pairs by the two develop-
ers are stable. In other words, there is no stable pure strategy NE in this game setting.
This result is easily depicted by the best response correspondence curves shown in
Figure 3.

Clearly, the two best response correspondences do not intersect each other, which
indicates the absence of pure strategy NE wherein no firm is willing to deviate.

Mixed Strategy Nash Equilibrium?

Having shown that there is no pure strategy NE, we now turn to consider the possibil-
ity of a mixed strategy NE. Before we proceed, it would be useful to consider the
following propositions.

Proposition 1: There cannot be any mixed strategy NE that forces either player
to achieve a constant payoff if we allow that player to vary his software price.

The reason is fairly obvious. Since the payoff of each player depends on his own
software price (but not the opponent’s), he can freely vary his price level and achieve
different profits. This is largely unaffected by his opponent’s decisions on functional-
ity or price. Therefore, if one has free choice governing his own price level, by all
means his opponent cannot force him to stay at a constant payoff, and hence there
cannot be any mixed strategy NE that allows players to vary P freely. That is, price
must be preset exogenously by the software developers for any equilibrium to exist.

In view of this proposition, we modify the situation slightly and consider the case
when the developers mix only over the variable Q, but not P. In other words, we
assume they choose the fixed pricing strategy P = aQ, where a is a preset, positive
constant.16 The next proposition proves to be very useful toward searching for mixed
strategy NE.

Proposition 2: If a mixed strategy NE exists, it must involve the two players
mixing uniformly over Q Î [0, 1]. That is, they must mix perfectly according to
a constant probability density function f(Q) = 1.

Proposition 2 can be established by contradictions. Suppose a mixed strategy NE
exists involving nonuniform probability distributions. Without loss of generality, as-
sume player 1 assigns a disproportionally large probability density FA over the range
Q² and 1, and the remaining density FB over 0 and Q² in his equilibrium strategy.
Denote this strategy SE. Since this game is symmetric, if SE constitutes a NE, player 2
should also follow the same strategy. That is, the player should also assign FA to the
range [Q², 1] and FB to the range [0, Q²). However, if player 2 assigns FA as a fixed
mass point on Q² and FB as a fixed mass point on 1 (and charges P = Q² when he



166     HUI AND TAM

chooses Q = 1), his payoff will improve over SE. Therefore, SE is not a best reply to
itself and hence cannot be an equilibrium strategy.

Proposition 2 is very useful in that it eliminates almost all candidates for equilib-
rium strategy. The only candidate that remains is the one mixing uniformly over [0, 1].
Is it an NE? Unfortunately, our results in Appendix C show that it is also not an
equilibrium strategy. Hence, there is no mixed strategy NE in this setting.

Up to this point, we have shown that there is no NE in the one-stage, simultaneous
game setting. This is quite a discouraging result to computer software developers
because it implies that if two developers enter the market simultaneously, there is no
promising guiding principle that can secure them positive payoffs. Even if they are
willing to vary the functionality levels of their software according to fixed probabil-
ity distributions, there is still no guarantee that they can extract positive profits on
expectations. Despite the fact that Q² is a good separating point for the two develop-
ers to divide the market and share good profits, it is almost self-enforcing that one of
them (the one choosing Q = Q²) would adjust his level of Q and invade the segment
of his opponent. Therefore, setting appropriate functionality is not an easy decision
for software developers if they decide to enter the duopoly market.

Nonetheless, if we allow either software developer (together with consumers) to be
patient and to wait until his opponent’s software appears on the market before he
makes his functionality decision, there can be a stable NE that involves pure strate-
gies from both developers. This is the topic of the next section.

A Two-Stage Variation of the Model

WE NOW CONSIDER A SLIGHTLY DIFFERENT MODEL in which the two developers will
set their functionality decisions in sequence. In stage 1, one of the two developers
would make his functionality and price decisions. The other developer observes this
move and then makes his own decision regarding how many functions should be

Figure 3. Best Response Correspondences of the Two Software Developers



SOFTWARE FUNCTIONALITY: A GAME THEORETIC ANALYSIS     167

included in stage 2. Payoffs are then determined by their choices of functionality and
prices.

This setting corresponds to cases when the idea behind the software is rather inno-
vative and some of the consumers are skeptical about adopting the software (that is,
they are patient and prefer to wait until the arrival of more alternatives before making
purchases). A majority of leisure software such as computer games, or new applica-
tion domains such as Customer Relationship Management (CRM) software or e-com-
merce applications, fall within this framework. By analyzing this setting, we shall
offer useful strategic implications to software developers who are uncertain about
locating the functionality of their new, innovative software.

To study the two developers’ behaviors in the two-stage model, we first analyze the
decision at stage 2. Without loss of generality, we assume that firm 1 is the first
moving firm. If firm 1 chooses to develop software at Q1 > Q² in stage 1, firm 2
would react by setting Q2 = Q1 – e in stage 2, which would result in a very bad payoff
to firm 1. If firm 1 opts for Q1 < Q² in stage 1, then firm 2’s best response in stage 2
would be Q2 = 1 (coupled with P2 = Q² or 0.5, depending on 1’s choice). Hence, firm
1 is better off by developing software as close to Q² as possible. If firm 1 produces
software exactly at Q², then firm 2 would be indifferent between choosing Q2 = 1 or
Q2 = Q1 – e. Since it is Pareto optimal for firm 2 to go for Q2 = 1 in this situation, we
assume firm 2 would go for Q2 = 1 when Q1 = Q².

Having resolved the reactions of firm 2 in the second stage, we now turn back to
stage 1. Given firm 2’s likely reactions, it is apparent that firm 1 should develop his
software at Q1 = Q² in stage 1, since this would yield the highest possible payoff for
him. The reaction of firm 2 in the second stage poses a big threat to firm 1. On one
hand, Q1 cannot be set too low or else firm 1 could only get a small demand and hence
a lower profit. On the other hand, if Q1 is set too high, firm 2 may undercut Q1 by a
slight amount, which would lead to a very bad payoff to firm 1. Therefore, the only
viable strategy for firm 1 is to strike the balance and go for Q1 = Q² in stage 1. We
shall term the strategy Q1 = Q² a “secure payoff” strategy for firm 1. Hence, the
unique NE consists of firm 1 choosing his secure payoff strategy Q1 = Q² (and P1 =
Q²/2) in stage 1, followed by firm 2 choosing Q2 = 1 (and P2 = Q²) in stage 2. The
profit would be p² for both firms. This is the best and yet sustainable outcome for
both players among all the strategies that we have considered so far in this paper.

In fact, this NE belongs to a more general class of equilibrium concepts called
reactive equilibrium [24]. The essential spirit of a reactive equilibrium is that if one of
the players (call him player A) prefers a deviation from his equilibrium strategy, the
other player can “punish” A by yet another strategy (which is also out of equilibrium)
that will lead to a worse outcome for A but a better outcome for himself. Furthermore,
no further deviation is possible for A so that he is strictly worse off if he chooses to
deviate at the very beginning. It can be easily checked that the NE that we character-
ized in this section fulfills the criteria of a reactive equilibrium. If player 1 deviates
from Q² and chooses Q1 > Q² in stage 1, player 2 can punish him by choosing Q1 – e
in stage 2. This would lead to a poor outcome for player 1 but a better outcome for
player 2 compared with the original equilibrium strategy. More importantly, player 1



168     HUI AND TAM

cannot move further (that is, he cannot react by further choosing Q2 – e). Therefore,
the likely reaction of player 2 forces player 1 to stay at his equilibrium strategy, and
the two-stage NE is a reactive equilibrium.17

Model Extensions

IN THIS SECTION, WE CONSIDER A FEW EXTENSIONS to our software functionality model.
We begin by relaxing the assumption on the scale economies parameter a.

Scale Economies in the Software Development Process

In the monopoly market, If a ¹ 1, then the FOCs of p over Q and P become

MP V MQ MP
Q P

V Q*
Q* P*

M

1

1
2

, 2 ,

2
, .

2

Similar to the case in constant returns to scale, Q* is a local minimum, and p in-
creases with Q provided Q ³ (4V/M)1/(2–a). The monopoly software developer would
continue to produce full functionality software in view of scale economies.18

In a duopoly market, the payoff matrix in Figure 2 can be modified slightly to add
in a. Again, provided V is not close to M/8 and a is near one, both developers have
incentives to lower the functionality of the software until a certain indifference point
that leads to equal profits. The only difference here lies in the “savings” in cost. In
qualitative terms, if a < 1 (diseconomies of scale), there is an additional incentive
(other than capturing higher demand) to lower functionality since the potential cost
saving is now higher than when there is constant returns to scale. If a > 1 (economies
of scale), the cost saving is comparatively smaller.

If the firms follow the monopoly pricing strategy P = Q/2, the condition that char-
acterizes the indifference point in Q is

MQ
VQ M Q V

MQ MQ M
VQ V

2

2

1
1

4 2

0.
4 2 2

In this case, a closed-form solution in Q cannot be solved, but we can always perform
a numerical search in the Q-space to locate the new Q¢. In the presence of economies
of scale (a > 1), the new Q¢ will be bigger than the Q¢ in the constant returns to scale
case, whereas if a < 1, the new Q¢ will be smaller.



SOFTWARE FUNCTIONALITY: A GAME THEORETIC ANALYSIS     169

If the “high Q” developer raises his price, then the new indifference point is charac-
terized by

MQ
VQ M Q Q V

MQ
MQ VQ V

2

2

1
4

5
0.

4

Again, a numerical search is needed to locate the new Q². If a > 1, the new Q² will be
bigger than the old one in the constant returns to scale case, whereas it will be smaller
if a < 1.

The general results remain intact. In the one-stage simultaneous setting, there will
be no NE in either pure or mixed strategy. If the developers make subsequent moves,
the reactive equilibrium in the two-stage model continues to apply and the first mover
would select the new Q², whereas the second mover would choose Q = 1. Depending
on the value of a, payoff p needs to be slightly modified. If a > 1, the new equilib-
rium profit will be higher for both players. If a < 1, then both players suffer because
of higher development costs.

Market Segmentation

We assumed a uniform distribution of consumer tastes in the previous discussions.
This is appropriate when the consumers have uniform tastes toward functionality.
Nevertheless, depending on the market under study, research has shown that con-
sumer preferences may be clustered into different segments, and techniques such as
cluster analysis, conjoint segmentation, and mixture regression models have been
devised to identify these segments [44]. We consider the results and implications of
our model in the presence of segmentation in this section.

Consider a segmented software market with two groups of consumers who differ in
their desire toward functionality. Consumer types are denoted by ql and qh, where
ql = rqh, 0 < r < 1. That is, the low requirement group has less desire toward the
functionality of the software, and they are in general satisfied with less powerful
software.19 Denote the cumulative density function (cdf) of qh as F, and Ml and Mh as
the sizes of the two segments.

For a particular software with functionality level Q, it attracts a low- (high-) type
consumer if Q ³ ql (qh). Surplus is again defined as (i = l, h):

ii
i

i

Qp
U

Q

,
.

0,

Demand for software with functionality Q is Di(Q, P) = Mi ´ Pr(Ui > 0 and qi £ Q).
That is,



170     HUI AND TAM

l l

h h

Q P
D M F F

r r

D M F Q F P

,

.

Because r < 1, the first part of the demand function Dl is discontinuous, and the two
pieces before and after Q = r need to be considered separately. Figure 4 plots the
demand functions Dl and Dh when P = 0 and qh follows a uniform distribution.

The profit function of a monopoly developer who constructs software with func-
tionality Q is

x l h

y l h

Q P
 Q r  M F F P M F Q F P P VQ

r r

P
 Q r M F P M F Q F P P VQ

r

if , .

if , 1 .

It is clear that py ³ px for all P £ r. This is fairly trivial, since having a higher Q implies
a higher number of potential customers. We can inspect the FOCs of py to identify the
optimal Q* and P*. The locations of the optimal Q* and P* depend on the shape of
the cdf F. If Mh is not small (relative to V) and consumer taste is not heavily skewed
toward the low requirement end, the monopoly developer would continue to build
full functionality software, and the final demand depends only on his pricing strategy.
Obviously, if r = 1, the two segments are identical and the model reverts back to the
single-segment situation; if r is very small, the monopolist may decide to serve only
the high segment, since to serve the low segment would require a drastic reduction in
price, which will substantially reduce his overall profit.

To examine the implications of segmentation in the duopoly market, note that we
can always add up the demands of the two segments for all Q Î [0, 1], assuming
P = 0. This overall demand can then be used to study the functionality decisions of the
two developers, taking into account the reductions in demand when prices are non-
zero. Although this demand function may not be continuous, we could follow the
same analytical procedures in the previous sections to derive similar conclusions.
That is, only a reactive equilibrium exists in the two-stage model.

Finally, at the reactive equilibrium, in cases of relatively “steady” cdf F, if r is close
to one, the two developers will serve both segments, whereas if r lies somewhere near
the middle of zero and one, there might be cases when optimality requires one of the
developers to serve only the high segment. This is because, in equilibrium, the low-Q
software may still attract consumers in the low requirement end of the high segment,
whereas the high-functionality software may cost so much that it deters all low seg-
ment consumers from buying. This appears to be in line with the empirical observa-
tion that there are software packages with superb functionality (and very high prices)
that are primarily targeted at organizational buyers, who are usually more resourceful
and can readily afford to pay for the excessive functions.



SOFTWARE FUNCTIONALITY: A GAME THEORETIC ANALYSIS     171

Conclusions and Other Remarks

TABLE 1 SUMMARIZES THE VARIOUS MODELS that we have discussed in this paper,
based on uniform taste preferences and constant returns to scale in development.

The analysis of the various competitive models on functionality generates a few
insights: first, a monopoly developer prefers to incorporate all possible functions into
his computer software, and there is a minimum “threshold” of functionality before
which the developer could not gain positive profits. Second, there is no stable NE in
the one-stage, simultaneous move duopoly market. Given one firm’s decision, there
is always a profit incentive for the other firm to deviate. Although there is one indif-
ference point in functionality for the two developers to divide up the market and
enjoy good profits, the strategies involving that point are not sustainable (as in all
other strategies). Third, a unique reactive equilibrium exists in the two-stage duopoly
model. The two players can achieve the best possible outcome by serving different
consumer groups who differ mainly in functional requirements. The prerequisite for
such an equilibrium, however, is that some consumers and one of the developers are
patient and they can wait until the first developer launches his software. Finally, al-
though the two players enjoy the same profit in the reactive equilibrium, the two
developers sell different software: the first mover sells mediocre software with lim-
ited functions, whereas the second mover sells full functionality software.

Ml 

MhF(r) 

r 

Mh 

Q 
1 

Dh 

Q 
1 

Dl 

Figure 4. Demand Functions When the Market Is Segmented and P = 0



172     HUI AND TAM

Ta
bl

e 
1.

 M
od

el
 A

ss
um

pt
io

ns
 a

nd
 R

es
ul

ts

M
od

el
A

ss
um

pt
io

ns
Q

*
P

*
Pr

of
it 

p
R

em
ar

k

M
on

op
ol

y
Q

 Î
 [0

, 1
]

V
 £

 M
/4

1
1/

2
M

/4
 –

 V
D

uo
po

ly
O

ne
 s

ta
ge

:
R

es
tr

ic
te

d 
Q

,
Q

 Î
 {

C
, D

},
 0

 <
 C

 <
 D

 £
 1

C
C

/2
M

C
2
/8

 –
 V

C
S

im
ila

r 
to

 p
ris

on
er

s’
m

on
op

ol
y 

pr
ic

in
g

P
 =

 Q
/2

fo
r 

bo
th

 p
la

ye
rs

di
le

m
m

a,
 w

he
re

 b
ot

h
st

ra
te

gy
 P

 =
 Q

/2
V

 £
 M

/8
pl

ay
er

s 
m

ak
e 

su
bo

pt
im

al
ch

oi
ce

s.
O

ne
 s

ta
ge

:
U

nr
es

tr
ic

te
d 

Q
,

Q
 Î

 [0
, 1

]
N

/A
N

/A
N

/A
B

es
t o

ut
co

m
e 

w
ou

ld
 b

e 
on

e
m

on
op

ol
y 

pr
ic

in
g

P
 =

 Q
/2

pl
ay

er
 c

ho
os

es
 Q

¢
st

ra
te

gy
 P

 =
 Q

/2
V

 £
 M

/8
(P

 =
 Q

¢ /2
),

 a
nd

 th
e 

ot
he

r
ch

oo
se

s 
1 

(P
 =

 1
/2

).
 B

ut
 it

 is
no

t s
us

ta
in

ab
le

. N
o 

pu
re

 o
r

m
ix

ed
 s

tr
at

eg
y 

N
E

.



SOFTWARE FUNCTIONALITY: A GAME THEORETIC ANALYSIS     173

O
ne

 s
ta

ge
:

U
nr

es
tr

ic
te

d 
Q

 a
nd

 P
Q

 Î
 [0

, 1
]

N
/A

N
/A

N
/A

B
es

t o
ut

co
m

e 
w

ou
ld

 b
e 

on
e

V
 £

 M
/8

pl
ay

er
 c

ho
os

es
 Q

²
(P

 =
 Q

² /
2)

, a
nd

 th
e 

ot
he

r
ch

oo
se

s 
1 

(P
 =

 Q
² )

. B
ut

 it
 is

no
t s

us
ta

in
ab

le
. N

o 
pu

re
 o

r
m

ix
ed

 s
tr

at
eg

y 
N

E
.

Tw
o 

st
ag

es
:

U
nr

es
tr

ic
te

d 
Q

 a
nd

 P
P

la
ye

r 
1 

m
ov

es
 in

 s
ta

ge
 1

Q
1
 =

 Q
²

P
1
 =

 Q
² /

2
p²

R
ea

ct
iv

e 
eq

ui
lib

riu
m

.
P

la
ye

r 
2 

m
ov

es
 in

 s
ta

ge
 2

Q
2
 =

 1
P

2
 =

 Q
²

fo
r 

bo
th

 p
la

ye
rs

Q
i Î

 [0
, 1

]
V

 £
 M

/8

N
ot

e:

M
M

M
Q

V
V

V
 Q

V
M

V
M

V
M

M
M

M
M

M
M

V
V

V
V

V
 

V
M

V
M

V
M

M

2

2

2
3

2
,

5
.

2
2

2
5

3
2

8
2

,
5

.
2

2
2

25
5



174     HUI AND TAM

Taken together, these insights provide useful references to software developers and
consumers in making their development or adoption decisions. In particular, in the
Internet age, consumers can readily observe the functionality and quality of software
products. It is infeasible for developers to take advantage of information asymmetry
in selling computer software. Also, owing to the negligible marginal cost of produc-
tion and distribution, the pricing of computer software affixes more on consumer
taste preferences. It would be more rewarding for software developers to specify
carefully the functionality of their products and price accordingly in order to capture
the highest possible demand.

In view of the result of no NE in the one-stage duopoly model, software developers
may find it challenging to make functionality decisions when they face a potential
competition from another developer. To mutually reach in viable strategies that are
beneficial to both parties, a certain level of predevelopment communication (such as
making preannouncements, which are rather common in software markets) or con-
tracting between the competing developers might be advantageous. Such actions help
to coordinate the choices of the developers so that they might be able to partition the
market and focus on their own niches. The precise effect of these coordinative actions
on the final software markets warrants future attentions and research efforts.

Alternatively, if a software developer cannot reasonably speculate the likely func-
tionality decision of his competitor, and the demand side of the market is more uncer-
tain toward adopting the software, he might be better off by simply assuming a
wait-and-see strategy. Such a strategy allows the developer to more accurately posi-
tion his product and appeal to a wider consumer group without forgoing too much
“initial” profit. In any case, our analysis on the two-stage model suggests that it might
not be a good idea for the “innovator” to build too many functions into his software.
This is because competitions from subsequent followers might cannibalize the profit
enjoyed the incumbent, should he decide to go for high functionality. In contrast, by
going for mediocre software, the incumbent might be able to induce followers into
another consumer group that is not currently attended to. Our results, however, can-
not provide clear-cut guidance when the demand is time sensitive and consumers are
very eager toward buying the software.

Our functionality model assumes developers to produce either zero or one software
package. When the market size is big and entrance cost is not high, there might be
“space” for new developers to come in and share the rents. In this case, a widely
pronounced strategy for the incumbent is to develop a full version (but not necessar-
ily high functionality) and then subsequently create low-value versions by excluding
subsets of functions [40, 41]. As long as the full version is developed, the cost for
generating another low-value version is substantially reduced, which may present the
incumbent an initial cost advantage against new entrants who want to invade the low-
value segment.

In our model, if the monopoly developer is allowed to sell two versions of the
software, and there is no threat of potential entrants, our results on the one-stage
duopoly market (particularly the division point Q²) may provide a good guidance
toward setting the levels of the two versions. This is because, for the monopolist,



SOFTWARE FUNCTIONALITY: A GAME THEORETIC ANALYSIS     175

there are no coordination or deviation issues. He can freely decide the Qs for his two
versions.

The case of versioning is more complicated in the duopoly model. In the one-stage
model, the result of no NE should continue to apply.20 In the two-stage model, the
possibility of versioning might suggest the first mover to develop full functionality
software and then sell multiple versions (which vary in functionality) to the market.
Nevertheless, as long as the potential rent can offset the development cost of new
software, other developers might continue to enter the market and compete with the
existing versions. That is, even if the first mover “covers up” the market by two or
more versions of his software, the second mover might still enter and launch software
with appropriate “in between” functionality. This is actually similar to a market with
monopolistic competition, where many software developers enter the market and sell
a single edition of the software. Other concerns, such as marketing and advertising
costs, entry barriers, or possibility of cannibalizations [32, 38], might also be in play
in such conditions. The resultant strategies and outcome of such a “saturated” market
is beyond the scope of this paper, and our functionality model might not be rich
enough to capture the dynamics of such a market. Further research is needed to char-
acterize this kind of competitive software market under the theme of functionality.

Another possible extension to the present study is to consider multistage settings
(or, in the extreme case, infinite stages) in which the decisions are repeated over time.
This would be a more complicated market environment in the sense that the decision
of each software developer might trigger a series of reactions from all other develop-
ers in subsequent periods.

Finally, we considered the development and selling of individual computer soft-
ware. If several software programs are bundled and sold together (like the Microsoft
Office Suite), even if they are completely unrelated and fall under several markets,
consumer preferences and their final choices might still be affected because the pur-
chase decision is now based on the whole “package” instead of individual products.
In this case, we might need to formulate an extensive optimization program with
multiple functionality and user requirement constraints pertaining to the included
software. Even so, the principal idea of studying competitions of computer software
using functionality as a key attribute stays put, and software developers are advised
to conduct thorough market analysis and user preference studies before constructing
their computer software.

NOTES

1. It is only necessary, but not sufficient. As pointed out by previous research, the final
choice of software also depends on other socioeconomic variables such as vendor reputation,
existing size of customer base, or market trend [28].

2. Although we focus on functionality, the model that we present in the next section could
also be extended to include the effects of other choice variables like vendor reputation or
application domain-specific factors. We defer that discussion until the third section.

3. In Raghunathan’s article, the term “feature” is used to characterize the two editions of the
software. Based on his descriptions, however, we infer that the meaning of “feature” is indeed
function related. For example, he states that “we assume that any feature present in the low-end



176     HUI AND TAM

edition is also present in the high-end edition . . . editions are upward compatible, an important
requirement in software” [38, p. 90]. In this study, the terms “feature” and “function” are used
interchangeably to denote routines or components that enhance the capability of the software.

4. The major difference lies in trialability. As mentioned earlier, the digital and functional
natures of computer software facilitate the practice of product tryout. Since consumers are
allowed to gain hands-on experience on the software, they can acquire more accurate informa-
tion on the performance, features, and quality of the software. In other words, the prepurchase
tryout experience can help to establish a solid information base for product evaluation and
choice. Such an extensive and precise product assessment, in general, cannot be conducted for
pure informational goods. For example, when evaluating the suitability of online reports or
data, consumers are often only given descriptive information or at best a small sample of the
product. The quality of the remaining parts of the product remains highly uncertain, and con-
sumers need to rely on their subjective judgments instead of objective information to guide
their purchase decisions.

5. Obviously, in this situation, the choice of consumers is no longer restricted to function-
ality, and the formulation of the consumer surplus function depends on other decision vari-
ables (those associated with l and d). Indeed, the role of the expression g(Q) is more like the
“value” (or “quality”) function in past strategic software studies, with functionality being the
key variable that characterizes the value (or quality) of the software.

6. It should be noted that l and d are exogenously determined (possibly by previous track
records of software quality or popularity) for each software vendor, and they are not controlled
by the vendors. If the competing vendors are sufficiently “similar” (that is, their ls and ds are
not too different) so that the same Q leads to comparable g(Q), our subsequent analysis and
results will remain largely unchanged (only minor shifts in optimal Qs will be observed in the
final equilibria). If, however, the two vendors are overly different so that one enjoys a definite
advantage relative to the other, then the low “quality” vendor could only target at the low-value
segment (because in this case, he faces a lower upper bound on maximum quality), and the two
vendors will naturally segment the market into two clusters, with the high “quality” vendor
serving the high-value segment of consumers. To avoid distracting our attention on functional-
ity, we shall cease our discussion here without going into details about the effects of imposing
different ls and ds into our model.

7. We assume equal cost parameters (V and a) across developers. Since the development of
computer software involves common activities like programming and testing, it is unlikely for
two developers to possess widely different development costs. Put another way, if it costs
substantially more for a developer to produce the same software than another developer, then
it probably indicates that the developer may have made suboptimal development decisions
(such as, he may have chosen an inappropriate programming environment or design method).
If V and a differ only slightly across developers, our subsequent results will largely hold with
only minor shifts in optimal Qs.

8. This is opposite to previous scale economies studies, where an a > 1 (< 1) indicates
diseconomies (economies) of scale. We need to reverse the meaning of a here because Q Î [0,1],
and having an a > 1 (< 1) actually reduces (increases) the overall cost, indicating increasing
(decreasing) returns to scale.

9. The software engineering literature suggests that the development cost increases with
the size of computer software. Traditionally, software size was mainly measured by either
function points or source lines of code (SLOC), and robust technique was devised to reduce
measurement errors and calibrate cost models using these software metrics [17]. Furthermore,
the two size measurements (SLOC and FP) were shown to be highly correlated with each other
[27]. Hence, the positive association between functionality and development cost is just a
direct extension of the size–cost relationship.

10. For instance, using published software project data, Banker and Kemerer [5] show that
the scale economies parameter ranged from 0.85 to 1.49 if FP was used as the size metric,
whereas it ranged from 0.72 to 1.11 if SLOC was used. Surprisingly, the majority of the esti-
mated parameters fell closely to one, indicating minor economies (or diseconomies) of scale.

11. If the developers do not know the cost parameters of each other, they need to rely on a
priori beliefs on the development efficiency and estimate the cost of their opponent. The devel-
opers can gather information from multiple sources to guide their estimations. They could base



SOFTWARE FUNCTIONALITY: A GAME THEORETIC ANALYSIS     177

their estimations on their own expertise and experience on software developments. Alterna-
tively, if preannouncements (or other market news) were previously released, it might be pos-
sible for them to infer the development tactics or approaches of their competitor. Therefore, the
developers should be able to estimate their competitor’s cost with reasonable accuracy, and the
common knowledge assumption is not particularly restrictive in this context. In fact, even if
minor deviations exist in their estimations, the results of our model remain intact, and similar
optimal strategies can be readily derived.

12. The new price P = C is still below the valuation of consumers in the interval (D, 1],
whereas it is higher than the price D/2. Hence, the high Q player can raise his price up to C
without driving away consumers.

13. The negative quadratic root is ruled out since Q¢ is nonnegative.
14. That is, when the per-function, onetime development cost is very minor compared to the

size of the overall market.
15. Again, the negative root is ruled out since Q² cannot be less than 0.5.
16. The firms’ pricing strategies must follow some stringent conditions. Recall monopoly

demand D = M(Q – P). A rational firm will never charge P higher than Q, since that will drive
away all consumers. The pricing strategy P = aQ (with a £ 1) can effectively prevent such an
irrational pricing behavior, and yet it is general enough to cover (by suitable adjustments of a)
the optimal pricing behaviors that we discussed in the previous sections.

17. As pointed out by Hirshleifer and Riley [24], a key idea (or indeed assumption) in the
reactive equilibrium concept is that the defector cannot simply hit and run. That is, player 1
cannot deviate by producing Q1 > Q² in stage 1, capture enough profit from consumers, and
then withdraw from the market before player 2 reacts. This criterion is satisfied here because
we explicitly assumed that consumers are patient. They can wait until the appearance of both
software packages before making purchases.

18. Because we set QH = 1, the profit of the monopoly developer remains the same as in the
constant returns to scale setting. This is generally not the case when Q ¹ 1. Obviously, profit is
higher when a > 1 (increasing returns to scale), whereas it is lower when a < 1 (decreasing
returns to scale). Note that these results hold only if a is not too “extreme” and M >> V. These
are largely supported by previous scale economies studies and the nature of COTS software
markets.

19. For instance, many commercial software packages serve both individual consumers and
business users, with the business users requiring higher levels of functionality. Examples in-
clude statistical packages, where most of the time individual users only need basic estimation
functions, as opposed to organization users who desire complex analytic functions; or Adobe
Photoshop, where home users are, most of the time, satisfied with the default list of filters,
whereas professional users often pay for additional sophisticated filters.

20. It is not difficult to see this result if we consider the two “adjacent” versions that are
produced by the two developers. In this case, the segment covered by these two versions is
similar to a market by itself, and there is always a profit incentive for one of the developers to
deviate.

REFERENCES

1. Ackerlof, G.A. The market for “lemons”: Quality uncertainty and the market mecha-
nism. Quarterly Journal of Economics, 84,  3 (1970), 488–500.

2. Albrecht, A.J., and Gaffney, J.E. Software function, source lines of code, and develop-
ment effort prediction: A software science validation. IEEE Transactions on Software Engi-
neering, SE-9, 6 (June 1983), 639–648.

3. Bakos, Y., and Brynjolfsson, E. Bundling information goods: Pricing, profits and effi-
ciency. Management Science, 45, 12 (1999), 1613–1630.

4. Bakos, Y.; Brynjolfsson, E.; and Lichtman, D. Shared information goods. Journal of
Law and Economics, 42, 1 (April 1999), 117–155.

5. Banker, R.D., and Kemerer, C.F. Scale economies in new software development. IEEE
Transactions on Software Engineering, 15, 10 (October 1989), 1199–1205.

http://gessler.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0025-1909^281999^2945:12L.1613[aid=1276985]
http://gessler.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0098-5589^28198910^2915:10L.1199[aid=2811195]
http://gessler.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0098-5589^28198910^2915:10L.1199[aid=2811195]


178     HUI AND TAM

6. Banks, J., and Gibson, R.R. Selecting simulation software. IIE Solutions, 29, 5 (May
1997), 30–32.

7. Boehm, B.W. Software Engineering Economics. Upper Saddle River, NJ: Prentice Hall,
1981.

8. Boehm, B.W., and Papaccio, P.N. Understanding and controlling software costs. IEEE
Transactions on Software Engineering, 14, 10 (October 1988), 1462–1477.

9. Brown, A.W., and Wallnau, K.C. A framework for evaluating software technology. IEEE
Software, 13, 5 (September 1996), 39–49.

10. Caldiera, G.; Antoniol, G.; Fiutem, R.; and Lokan, C. Definition and experimental evalu-
ation of function points for object-oriented systems. In Proceedings of the Fifth International
Software Metrics Symposium. Los Alamitos, CA: IEEE Computer Society Press, 1998, pp.
167–178.

11. Chan, Y.E., and Storey, V.C. The use of spreadsheets in organizations: Determinants and
consequences. Information and Management, 31, 3 (1996), 119–134.

12. Chartier, A. Gold is the details: Micropayment’s big future. Computing Canada, 25, 7
(February 1999), 28.

13. Chau, P.Y.K. Factors used in the selection of packaged software in small businesses:
Views of owners and managers. Information and Management, 29, 2 (1995), 71–78.

14. Choi, S.; Stahl, D.O.; and Whinston, A.B. The Economics of Electronic Commerce.
Indianapolis, IN: Macmillan Technical Publishing, 1997.

15. Choudhary, V.; Tomak, K.; and Chaturvedi, A.R. Economic benefits of software renting.
Journal of Organizational Computing and Electronic Commerce, 8, 4 (1998), 277–305.

16. Collier, K.; Carey, B.; Sautter, D.; and Marjaniemi, C. A methodology for evaluating and
selecting data mining software. In R.H. Sprague Jr. (ed.), Proceedings of the Thirty-Second
Hawaii International Conference on System Sciences. Los Alamitos, CA: IEEE Computer
Society Press, 1999, pp. 1–11.

17. Ebrahimi, N.B. How to improve the calibration of cost models. IEEE Transactions on
Software Engineering, 25, 1 (January–February 1999), 136–140.

18. Ellison, G., and Fudenberg, D. The Neo-Luddite’s lament: Excessive upgrades in the
software industry. RAND Journal of Economics, 31, 2 (Summer 2000), 253–272.

19. Fenton, N.E., and Pfleeger, S.L. Software Metrics: A Rigorous and Practical Approach,
2d ed. Boston: International Thomson Computer Press, 1997.

20. Franco, M.D. Choosing a software system. Catalog Age, 15, 12 (November 1998), 65.
21. Gibbons, R. Game Theory for Applied Economists. Princeton: Princeton University Press,

1992.
22. Goodwin, N.C. Functionality and usability. Communications of the ACM, 30, 3 (March

1987), 229–233.
23. Gurbaxani, V., and Mendelson, H. An empirical analysis of software and hardware spend-

ing. Decision Support Systems, 8, 1 (1992), 1–16.
24. Hirshleifer, J., and Riley, J.G. The Analytics of Uncertainty and Information. Cambridge:

Cambridge University Press, 1992.
25. Hoxmeier, J.A. Software preannouncements and their impact on customers’ perceptions

and vendor reputation. Journal of Management Information Systems, 17, 1 (Summer 2000),
115–139.

26. Hu, Q.; Plant, R.T.; and Hertz, D.B. Software cost estimation using economic production
models. Journal of Management Information Systems, 15, 1 (Summer 1998), 143–163.

27. Kemerer, C.F. An empirical validation of software cost estimation models. Communica-
tions of the ACM, 30, 5 (May 1987), 416–429.

28. Kunda, D., and Brooks, L. Identifying and classifying processes (traditional and soft
factors) that support COTS component selection: A case study. European Journal of Informa-
tion Systems, 9, 4 (2000), 226–234.

29. Marshall, G. Finding the right software. Agency Sales, 29, 2 (February 1999), 4–7.
30. Matson, J.E.; Barrett, B.E.; and Mellichamp, J.M. Software development cost estimation

using function points. IEEE Transactions on Software Engineering, 20, 4 (April 1994), 275–287.
31. McGrenere, J., and Moore, G. Are we all in the same “bloat”? In Proceedings of Graph-

ics Interface 2000. Available at www.graphicsinterface.org/proceedings/2000/144/
PDFpaper144.pdf.

http://www.graphicsinterface.org/proceedings/2000/144/PDFpaper144.pdf
http://www.graphicsinterface.org/proceedings/2000/144/PDFpaper144.pdf
http://gessler.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0098-5589^28198810^2914:10L.1462[aid=1383246]
http://gessler.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0378-7206^281996^2931:3L.119[aid=1675958]
http://gessler.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0742-1222^28200022^2917:1L.115[aid=1629182]
http://gessler.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0960-085X^282000^299:4L.226[aid=1621429]
http://gessler.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0098-5589^28198810^2914:10L.1462[aid=1383246]
http://gessler.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0742-1222^28200022^2917:1L.115[aid=1629182]
http://gessler.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0960-085X^282000^299:4L.226[aid=1621429]


SOFTWARE FUNCTIONALITY: A GAME THEORETIC ANALYSIS     179

32. Moorthy, K.S., and Png, I.P.L. Market segmentation, cannibalization, and the timing of
product introductions. Management Science, 38, 3 (March 1992), 345–359.

33. Morisio, M., and Tsoukias, A. IusWare: A methodology for the evaluation and selection
of software products. IEEE Proceedings on Software Engineering, 144, 3 (June 1997), 162–
174.

34. Morisio, M.; Stamelos, I.; Spahos, V.; and Romano, D. Measuring functionality and
productivity in Web-based applications: A case study. In Proceedings of the Sixth International
Software Metrics Symposium. Los Alamitos, CA: IEEE Computer Society Press, 1999, pp.
111–118.

35. Ochs, M.; Pfahl, D.; Chrobok-Diening, G.; and Nothhelfer-Kolb, B. A method for effi-
cient measurement-based COTS assessment and selection—Method description and evalua-
tion results. In Proceedings of the Seventh International Software Metrics Symposium. Los
Alamitos, CA: IEEE Computer Society Press, 2001, pp. 285–296.

36. Padmanabhan, V.; Rajiv, S.; and Srinivasan, K. New products, upgrades, and new re-
leases: A rationale for sequential product introduction. Journal of Marketing Research, 34, 4
(November 1997), 456–472.

37. Patch, K. Drop a dime online. InfoWorld, 20, 48 (November 1998), 71–72.
38. Raghunathan, S. Software editions: An application of segmentation theory to the pack-

aged software market. Journal of Management Information Systems, 17, 1 (Summer 2000),
87–113.

39. Sarvary, M., and Parker, P.M. Marketing information: A competitive analysis. Marketing
Science, 16, 1 (1997), 24–38.

40. Shapiro, C., and Varian, H.R. Versioning: The smart way to sell information. Harvard
Business Review, 76, 6 (1998), 106–114.

41. Shapiro, C., and Varian, H.R. Information Rules: A Strategic Guide to the Network
Economy. Boston: Harvard Business School Press, 1999.

42. Varian, H.R. Markets for information goods. Working paper, University of California,
Berkeley, 1998.

43. Voas, J. COTS software: The economical choice? IEEE Software, 15, 2 (March-April
1998), 16–19.

44. Wedel, M., and Kamakura, W. Market Segmentation: Conceptual and Methodological
Foundations, 2d ed. Boston: Kluwer Academic Publishers, 2000.

45. West, R., and Shields, M. Strategic software selection. Strategic Finance (August 1998),
3–7.

http://gessler.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0022-2437^28199711^2934:4L.456[aid=1528698]
http://gessler.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0742-1222^28200022^2917:1L.87[aid=2811205]
http://gessler.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0017-8012^281998^2976:6L.106[aid=1646166]
http://gessler.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0022-2437^28199711^2934:4L.456[aid=1528698]
http://gessler.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0742-1222^28200022^2917:1L.87[aid=2811205]
http://gessler.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0017-8012^281998^2976:6L.106[aid=1646166]


180     HUI AND TAM

Appendix A

M Q P P VQ

MP
V

Q

MQ Q
MP P

P

equal

equal

equal

1

2

2

0 .
2 2

Following the same steps in the previous analysis, ¶p(equal)/¶Q ³ 0 if and only if Q ³
4V/M. If Q < 4V/M, p(equal) is non-positive. Hence, optimality requires Q = 1 and the
maximum payoff that the two players can achieve when they set equal Q is p(equal) = M/
8 – V.

Now compare p¢ and p(equal).

M M M M
V V V V

M
V V VM M

M M VM M
V V

M M
V V

equal

2 2

2 2

2

3
2

2 2 2 8

7 3
2

8 4

7 7

8 8 4 64

7 7
0.

8 8

Therefore, p¢ > p(equal).



SOFTWARE FUNCTIONALITY: A GAME THEORETIC ANALYSIS     181

Appendix B

FIRST, LET B = V/M, 0 £ B £ 1/4 (since V £ M/4).

Q B B B B B B

Q B B B B B

Q Q B B B

22

22

2 2

2 2
1 3 1 1 1

5 5

1 3 1 1
2 2 2 1

2 4 2 4

2 1
1 5 1 1 .

5 4

When

B  Q Q
1 2

, 1 0.
4 5

Hence, Q² > Q¢.
When B < 1/4, the second term in Q² – Q¢ decreases in magnitude. Hence, Q²

always exceeds Q¢.
Now recall

M M
Q VQ Q VQand .

4 4

M M
Q Q V Q Q V Q Q 0.

4 4

Hence, p² > p¢.



182     HUI AND TAM

Appendix C

WE FIRST CONSIDER THE PAYOFF to the software developers if they both choose Q
according to a uniform probability distribution. Call this strategy SU. If player 2 sets
price P2 = aQ2 (with a £ 1), his payoff is

aQ Q

aQ

Q

E a  Q Q   P Q  Q Q   P Q

 Q Q

M Q aQ aQ VQ dQ M Q Q aQ VQ dQ

M Q aQ aQ VQ dQ dQ

aMQ Q
aM a Q VQ aQ aMQ Q VQ Q

1 2

1

2

2 2 2 1 2 1 2 2 1 2 1

2 2 1

1

2 2 2 2 1 2 1 2 2 1
0 0

1

2 2 2 2 1 2

2
2 2 2 1
2 2 2 2 1 1 2

when and when and

when

1
2

Q

Q aQ

aM a Q VQ Q dQ

Ma a M aM
Q M a a Q VQ dQ

aM a M a M V

2

1 2

1

0

2
2 2 2 2

2 31
3 2 2
2 2 2 2

0

2 3

1 1

2

2

5
.

24 12 8 2

Now,

dE a M aM a M

da

a a

a a

a a

2
2

2

5 3
0

24 6 8

5 4 9 0

9 5 1 0

5
1 rejected or .

9

Therefore, when both players play SU (the uniform mixed strategy), each of them
will receive the maximum payoff if they follow a constant pricing strategy P = 5Q/9.

Payoff in this case is

a

M V
E a 52

9

50
.

729 2



SOFTWARE FUNCTIONALITY: A GAME THEORETIC ANALYSIS     183

Denote this payoff X. Next consider the payoff to player 2 when, instead of mixing
uniformly over [0, 1], he plays the fixed strategy Q2 = 1 and P2 = aQ2 = a. His new
payoff is

a

a

Q a

E a  Q Q   P Q  Q Q   P Q

M a a V dQ M Q a V dQ

aMQ
M a a V a Ma V a

aM a M
V

dE a M a M

da

a

a a

1

2 2 2 1 2 1 2 2 1 2 1

1

1 1 1
0

12
1

3

2
2

2

1, when and when and

1 1

1 1
2

2 2
1, 3

0
2 2

1 3 0

1 1
rejected or .

3 3

Hence, the optimal payoff for player 2 in this case is achieved at a 1/ 3.
The corresponding profit is

a

M
E a V12

3

1, .
3 3

Denote this payoff Y.
Now

M M V
Y X V

V
M

50

729 23 3

81 3 50
.

729 2

Again, provided V is not close to M/4, Y – X is always positive. If V is close to M/4,
both Y and X are non-positive. Hence, when the per-function, onetime development
cost is not too high relative to the total market potential, the profit given by a fixed
strategy Q = 1 exceeds the one given by SU. When the cost is indeed too high, strategy
SU will yield a negative profit, and the firms can benefit by playing the constant
strategy Q = 0 (staying out of the market). In any case, strategy SU is not a best
response to itself, and therefore it cannot be an NE.



184     HUI AND TAM

More generally, when consumer type is not uniformly distributed, proposition 2
can always be tailored according to the new demand distribution to eliminate all but
the perfectly mixed strategy. However, because the demand is now unbalanced, it is
easy to see that another mixed (or, occasionally, pure) strategy can be constructed
that pays better than the perfectly mixed strategy. Hence, our proof of no mixed strat-
egy NE is general enough to cover other functional forms of consumer distribution.


